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The stability of Soret-driven thermosolutal convection in a shallow horizontal layer
of a porous medium subjected to inclined thermal and solutal gradients of finite
magnitude is investigated theoretically by means of a linear stability analysis. The
horizontal components of these gradients induce a Hadley circulation, which becomes
unstable when vertical components are sufficiently large. We employed a two-term
Galerkin approximation for various modes of instability. The effect of the Soret para-
meter on the mechanism of instability of the thermosolutal convection is investigated.
Results are presented for various values of the governing parameters of the flow. It
is observed that the Soret parameter has a significant effect on convective instability
and this is discussed.

1. Introduction
In this paper, we study the linear stability of a steady convective double diffusive

flow of Hadley type considering the Soret effect which is set up by the horizontal
components of temperature and concentration gradients in a shallow horizontal layer
of a fluid-saturated porous medium. The instability arises as a result of the presence
of a vertical component of the temperature gradient.

A large number of papers have been published dealing with natural convection
in a horizontal layer, induced by either horizontal or vertical temperature gradients,
but very few have dealt with the more general situation of inclined temperature
gradients. Weber (1973) considered the problem of thermal convection with horizontal
temperature gradients in a viscous fluid. Weber (1974) analysed the effect of horizontal
and vertical thermal gradients on convection in a porous medium. Bhattacharrya &
Nadoor (1976) analysed the stability of thermal convection between non-uniformly
heated plates whereas Sarkar & Phillips (1992) analysed the effects of horizontal
gradients on thermohaline instabilities in a thick porous layer. Parthiban & Patil
(1993) studied the effect of inclined temperature gradient on thermal instability in an
anisotropic porous medium. Parthiban & Patil (1994) analysed the effect of inclined
gradients on thermohaline convection. Parthiban & Patil (1997) analysed the thermal
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instability in an anisotropic porous medium with internal heat source and inclined tem-
perature gradient. Manole & Lage (1995) analysed the supercritical Hadley circulation
within a porous layer, induced by an inclined temperature gradient. Also Manole, Lage
& Antohe (1995) analysed the bifurcation to a travelling wave in a supercritical Hadley
circulation within a layer of fluid-saturated porous medium. Manole, Lage & Nield
(1994) studied the convection induced by inclined thermal and solutal gradients, with
horizontal mass flow, in a shallow horizontal layer of a porous medium. Guo & Kaloni
(1995) analysed the nonlinear stability of thermosolutal convection induced by inclined
thermal and solutal gradients. Kaloni & Qiao (1997) studied the nonlinear stability
of convection in a porous medium with inclined temperature gradient and extended
their work to analyse the nonlinear convection in a porous medium with inclined
temperature gradient and variable gravity field (Kaloni & Qiao 2001). Qiao & Kaloni
(1997) studied the convection induced by inclined temperature gradient with mass flow
in a porous medium. Convection induced by inclined gradients in a shallow porous
medium layer has been discussed by Lage & Nield (1998). Qiao & Kaloni (1998)
analysed the nonlinear convection in a porous medium with inclined temperature
gradient. Thorpe, Hutt & Souloby (1973) studied the effect of horizontal gradients on
thermohaline convection. Nield (1990) studied the problem of convection in a porous
medium with inclined temperature gradient, and extended his work to study the effects
of horizontal mass flow (Nield 1991) and additional results were presented in Nield
(1994). Also Nield (1998) analysed the convection in a horizontal layer of porous
medium with inclined temperature gradient considering vertical through flow. Alex &
Patil (2001) analysed variable gravity effects on thermal instability in a porous medium
with internal heat source and inclined temperature gradient, and extended their work
to analyse variable gravity field on thermal instability in a porous medium with
inclined temperature gradient and vertical through flow (Alex & Patil 2001). Alex &
Patil (2002) studied the effect of variable gravity field on convection in an anisotropic
porous medium with internal heat source and inclined temperature gradient. Nield,
Manole & Lage (1993) analysed the thermosolutal convection in a horizontal layer of
a porous medium with inclined temperature and concentration gradients. A review on
convection with inclined temperature gradients can be found in Nield & Bejan (2006).

The terms Soret effect and Dufour coefficient give rise to interaction between
the thermal and solute fields even when the fluid is at rest. However, it is
well known that the Soret coefficient has a considerable effect on the convection
process in liquids, whereas the literature survey reveals that the Dufour effect
can be negligible in liquids, but it plays a prominent role in gaseous mixtures.
Hurle & Jakeman (1971) have analysed theoretically the Soret effect on the
Rayleigh–Jeffrey problem neglecting the Dufour coefficient and have shown that
stable solutions could occur owing to this effect in water–methanol mixtures when
they are heated from below. Eckert & Drake (1972) have analysed the effect
of the Soret and Dufour parameters on convection heat and mass transport in
the medium. Platten & Chavepeyer (1973) have analysed oscillatory motion in
Bénard cells due to the Soret effect theoretically and experimentally. Thermosolutal
convection in a solution with large negative Soret coefficient has been analysed
by Caldwell (1976). Elementary transition state theory of the Soret and Dufour
effect in ideal mixtures was discussed in Mortimer & Eyring (1980). Zimmermann,
Muller & Davis (1992) analysed the Bénard convection in binary mixtures with
the Soret effect and performed experiments on mixtures of ethyl alcohol and
water. Bahloul, Boutana & Vasseur (2003) analysed the problem of double-diffusive
and Soret-induced convection in a shallow horizontal porous layer analytically
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Figure 1. Schematic of the problem.

and numerically on a natural convection process filled with binary fluid under
prescribed uniform heat and mass flux conditions on the boundaries. Alex, Patil &
Venkatakrishnan (2001) analysed the effect of variable gravity field on thermosolutal
convection in a porous medium considering the Soret effect. Thermodiffusion in
porous media and its consequences are discussed in Costèque, Fargue & Janet (2002).
Platten, Dutrieux & Chavepeyer (2002) presented techniques to measure the Soret
effect on free convection. Platten et al. (2003) presented benchmark values for the Soret
effect of three binary organic liquid mixtures. Delahaye, Bahloul & Vasseur (2002)
studied the influence of the Soret effect on convection in a binary liquid layer with a
free upper surface whereas Ouriemi, Vasseur & Bahloul (2005) analysed the natural
convection of a binary mixture confined in a slightly inclined tall enclosure considering
the Soret effect. Platten (2006) reviews experimental results for the Soret effect.

This study is an extension to Nield et al. (1993) by including the Soret effect in
the medium. We incorporated the novel scaling given in Nield et al. (1993) such
that the horizontal Rayleigh numbers appear explicitly in the boundary conditions.
Also we used the two-term Galerkin approximation in the numerical computations.
Dirichlet-type boundary conditions are used on the perturbation of temperature and
concentration.

2. Mathematical formulation
The problem considered here is shown in figure 1. The Cartesian axes are chosen

with the z∗-axis vertically upwards. The superscript asterisk denotes dimensional
variables. The porous medium occupies a layer of height H . The vertical temperature
difference and vertical concentration difference are �T and �C, respectively, across
the boundaries. (βTx

, βTy
) and (βCx

, βCy
) are the imposed horizontal temperature and

concentration gradient vectors, respectively. Under the Boussinesq approximation, the
governing equations for the Darcy porous medium may be written in dimensional
form as

∇∗ · v∗ = 0, (1)
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v∗ =
K

μ
(−∇∗P ∗ + ρ∗

f g), (2)

(ρ c)m

(
∂T ∗

∂t∗

)
+ (ρ cP )f v∗·∇∗T ∗ = km ∇∗2

T ∗, (3)

φ

(
∂C∗

∂t∗

)
+ v∗ · ∇∗C∗ = Dm ∇∗2

C∗ +
Dm km

cs cp

∇∗2

T , (4)

where

ρ∗
f = ρ0[1 − γT (T ∗ − T0) − γC(C∗ − C0)].

The boundary conditions considered are of the form

w∗ = 0, T ∗ = T0 − 1
2
(± �T ) − βTx

x∗ − βTy
y∗,

C∗ = C0 − 1
2
(± �C) − βCx

x∗ − βCy
y∗, z∗ = ± 1

2
H.

}
(5)

Here, (u∗, v∗, w∗) = v∗is the Darcy velocity, P ∗is the pressure, T ∗ and C∗ are tempe-
rature and concentration, respectively. The subscripts m and f refer to the porous
medium and the fluid, respectively. Also μ, ρ, cs and cp denote the viscosity, density,
concentration susceptibility and specific heat at constant pressure, respectively. km and
Dm denote the thermal and concentration diffusivities in the medium. Also γT and γC

are the thermal and solutal expansion coefficients in the medium. Here, K and φ are
the permeability and porosity of the medium. The coefficient Dm km/(cs cp) which is
added to the concentration equation is termed the Soret coefficient in the medium.

We introduce the following non-dimensional variables in the governing partial
differential equations

x =
x∗

H
, y =

y∗

H
, z =

z∗

H
, t =

αmt∗

AH 2
, v =

H v∗

αm

, P =
K(P ∗ + ρ0gz∗)

μαm

,

T =
Rz(T

∗ − T0)

�T
, C =

Sz(C
∗ − C0)

�C
,

where

αm =
km

(ρ cp)f
, A =

(ρ c)m
(ρ cp)f

, Rz =
ρ0gγT KH�T

μαm

, Sz =
ρ0gγCKH�C

μDm

.

Here, Rz and Sz are the vertical thermal and solutal Rayleigh numbers, respectively.
Also we introduce the horizontal thermal and solutal Rayleigh numbers as

Rx =
ρ0gγT KH 2βTx

μαm

, Ry =
ρ0gγT KH 2βTy

μαm

,

Sx =
ρ0gγCKH 2βCx

μDm

, Sy =
ρ0gγCKH 2βCy

μDm

.

Under these non-dimensional variables, the governing equations (1)–(4) take the form

∇ · v = 0, (6)

v = −∇P +

(
T +

1

Le
C

)
k, (7)

∂T

∂t
+ v · ∇T = ∇2T , (8)

(φ/A)
∂C

∂t
+ v · ∇C =

1

Le
∇2C + Sr ∇2T . (9)
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The transformed boundary conditions become

w = 0, T = − 1
2
(±Rz) − Rxx − Ryy, C = − 1

2
(±Sz) − Sxx − Syy at z = ± 1

2
. (10)

We recognize that the scaling used for time and velocity is somewhat arbitrary
in a double-diffusive context. It has the advantage that it puts (3) and (4), in their
simplest possible form and groups φ and A together in (9). This novel scaling
of temperature and concentration has the effect of making Rz and Sz appear in
the boundary conditions rather than in the differential equations. This has the
consequence that all the Rayleigh numbers appear in the perturbation equations
via the steady-state solutions only. The Lewis number Le is defined as the ratio of
thermal and solutal diffusivities and is given by Le = αm/Dm. This shows that the
solutal Rayleigh number can be expressed as Sz = NLeRz where N is the buoyancy
ratio and is given by γC�C/(γT �T ). Here Sr is the Soret parameter and is given by
Dmkm�T Sz/(cscpαm�CRz).

3. Steady-state solution
The governing equations admit a steady-state solution of the form

Ts = T̃ (z) − Rxx − Ryy, Cs = C̃(z) − Sxx − Syy, (11a)

us = U (z), vs = V (z), ws = 0, Ps = P (x, y, z). (11b)

with

DU = Rx +
Sx

Le
, DV = Ry +

Sy

Le
, (12a)

D2T̃ = −URx − V Ry,

1

Le
D2C̃ = −USx − V Sy + Sr D2T̃ . (12b)

Here, D denotes the differentiation with respect to z.
When there is no net flow in the horizontal direction, we have 〈 U〉 = 0, 〈V 〉 = 0,

where 〈 〉 represents integration with respect to z from z = − 1
2

to 1
2
. Then we obtain

the following solution for the flow, temperature and concentration in the medium

U =

(
Rx +

Sx

Le

)
z, V =

(
Ry +

Sy

Le

)
z (13a)

T̃ = −Rzz + 1
24
λ1(z − 4z3), C̃ = −Szz + 1

24
λ2(z − 4z3), (13b)

where λ1 and λ2 are given by

λ1 = R2
x + R2

y +
RxSx + RySy

Le
,

λ2 = S2
x + S2

y + Le(RxSx + RySy − Sr λ1).

⎫⎬
⎭ (14)

Further, we define the thermal and solutal Rayleigh number vectors by R =
(Rx, Ry, Rz) and S = (Sx, Sy, Sz). The flow given by (13) is the Hadley circulation
and here it is in the vertical plane containing the vector R + S/Le .

4. Linear stability analysis
Consider the perturbations in the form v = vs +V ′, T = Ts +θ ′, C = Cs +c′, P = Ps +

p′, where the subscript s denotes steady-state solution and the prime represents the
disturbance quantity. Upon substituting these perturbations into the non-dimensional
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governing equations and neglecting the products of disturbances, the linearized
perturbation equations are obtained as

∇ · V ′ = 0, (15)

V ′ = −∇p′ +

(
θ ′ +

1

Le
c′

)
k, (16)

∂θ ′

∂t
+ U

∂θ ′

∂x
+ V

∂θ ′

∂y
− Rxu

′ − Ryv
′ + (DT̃ )w′ = ∇2θ ′, (17)

(φ/A)
∂c′

∂t
+ U

∂c′

∂x
+ V

∂c′

∂y
− Sxu

′ − Syv
′ + (DC̃)w′ =

1

Le
∇2c′ + Sr ∇2θ ′. (18)

Taking the normal modes of the form

[u′, v′, w′, θ ′, c′, p′] = [u(z), v(z), w(z), θ(z), c(z), p(z)] exp{i (k x + l y − σ t)} (19)

and substituting in the above linearized perturbation equations (15)–(18) and further
eliminating p, u and v from the resulting equations, we obtain

(D2 − α2)w + α2

(
θ +

1

Le
c

)
= 0, (20)

(D2 − α2 + iσ − ikU − ilV )θ + i
1

α2
(kRx + lRy)Dw − (DT̃ )w = 0, (21)

(
1

Le
[D2 − α2] + i(φ/A)σ − ikU − ilV

)
c

+ i
1

α2
(kSx + lSy)Dw − (DC̃)w + Sr (D2 − α2)θ = 0, (22)

where DT̃ = −Rz + λ1(1 − 12z2)/24 and DC̃ = −Sz + λ2(1 − 12z2)/24. The above
eigenvalue system of equations (20)–(22) is solved subject to the boundary conditions

w = 0, θ = 0, c = 0 at z = ± 1
2
. (23)

In the above, α =
√

k2 + l2 is the overall wavenumber. The wavenumber vector
is defined by α = (k, l, 0). Now, refer to a disturbance with α perpendicular to
the direction of the Hadley circulation as a longitudinal mode and a disturbance
with α parallel to this plane as a transverse mode. For a longitudinal mode,
the flow is composed of convective rolls, with axes aligned with the Hadley
circulation, superposed upon that circulation. For a transverse mode, the roll axes are
perpendicular to the Hadley circulation.

The above equations (20)–(23) constitute an eigenvalue problem for Rz with
Le, φ, A, Rx, Ry, Sx, Sy, Sz, σ, k, l and Sr as parameters. The critical value of Rz is
its minimum as σ, k and l are varied (with σ taking certain determined values).

5. Numerical procedure
The two-term Galerkin method is employed to find the eigenvalue Rz as suggested in

Nield et al. (1993). The trial functions are chosen such that they satisfy the boundary
conditions of the form

w2p−1 = θ2p−1 = c2p−1 = cos(2p −1)πz, w2p = θ2p = c2p = sin 2pπz for p = 1, 2, . . .
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Now the second-order approximations for w, θ, c are in the following form:

w =

2∑
j=1

Ajwj , θ =

2∑
j=1

Bjθj , c =

2∑
j=1

Cjcj (24)

We substitute these expressions into (20)–(22). Now we multiply the first of these
equations by w1, the second of these equations by θ1 and the third of these equations
by c1. Similarly, repeat with w2, θ2 and c2, then integrate each term with respect to z

from z = − 1/2 to 1/2. After integrating by parts and using the boundary conditions,
a system of six homogeneous linear equations in six unknowns A1, A2, B1, B2, C1 and
C2 are obtained, this results in an eigenvalue problem in the form det(Am,n) = 0.

For m, n = 1, 2, the elements of the matrix are given by

A3m−2, 3n−2 = 〈Dwm Dwn + α2wm wn〉,
A3m−2, 3n−1 = −α2〈wm θn〉,

A3m−2, 3n = −α2 1

Le
〈wm cn〉,

A3m−1, 3n−2 =

〈
DT̃ θmwn − i

1

α2
(kRx + lRy)θm Dwn

〉
,

A3m−1, 3n−1 =

〈
Dθm Dθn + (α2 − i[σ − kU − lV ])θm θn〉,

A3m−1, 3n = 0,

A3m, 3n−2 =

〈
DC̃ cm wn − i

1

α2
(kSx + lSy)cm Dwn

〉
,

A3m, 3n−1 = 〈Sr (Dcm Dθn + α2cm θn)〉,

A3m, 3n =

〈
1

Le
Dcm Dcn + (α2 − i[(φ/A)σ − kU − lV ])cm cn

〉
.

The various integrals involved in the above can easily be evaluated. For example,

〈w
m

wn〉 = 1
2
δmn, 〈Dwm Dwn〉 = 1

2
m2π2 δmn,

〈z θm wn〉 =
4mnνmn

π2(m2 − n2)2
,

〈z2 θm wn〉 =

(
1

24
− 1

4π2n2

)
δmn,

〈θm Dwn〉 =
2mnνmn

n2 − m2
,

where νmn =

⎧⎪⎨
⎪⎩

0 if m + n is even,

1 if 1
2
(m + n + 1) is even,

−1 if 1
2
(m + n + 1) is odd,

Hence, we find the elements of the matrix A as

A11 = 1
2
(π2 + α2), A12 = − 1

2
α2, A13 = − 1

2 Le
α2, A14 = A15 = A16 = 0,

A21 = − 1
2
Rz +

λ1

8π2
, A22 = 1

2
(π2 + α2 − iσ ), A23 = 0,
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A24 = −4i
α·R
3α2

, A25 = −8i

{
α·R +

1

Le
α·S

}

9π2
, A26 = 0,

A31 = − 1
2
sz +

λ2

8π2
, A32 =

Sr

2
(π2 + α2), A33 =, 1

2

{
1

Le
(π2 + α2) − i(φ/A)σ

}
,

A34 = −4i
α·S
3α2

, A35 = 0, A36 = 8i

{
α·R +

1

Le
α·S

}

9π2
,

A41 = A42 = A43 = 0, A44 = 1
2
(π2 + α2), A45 = − 1

2
α2, A46 = − 1

2 Le
α2,

A51 = 4i
α·R
3α2

, A52 = 8i

{
α·R +

1

Le
α·S

}

9π2
, A53 = 0,

A54 = − 1
2
Rz +

λ1

32π2
, A55 = 1

2
(4π2 + α2 − iσ ), A56 = 0,

A61 = 4i
α·S
3α2

, A62 = 0, A63 = 8i

{
α·R + 1

Le
α·S

}

9π2

A64 = − 1
2
sz +

λ2

32π2
, A65 =

Sr

2
(4π2 + α2), A66 =, 1

2

{
1

Le
(4π2 + α2) − i(φ/A)σ

}
.

Since the matrix is of order 6 × 6, and involves large parameter space, it is difficult
to find a dispersion relation between the critical vertical Rayleigh number Rz and
the wavenumber α; but this can be obtained in one special case. If R and S lie in
the same vertical plane, then for the longitudinal modes we have α · R = α · S = 0, the
sixth-order determinant factorizes into the product of two third-order determinants
and the eigenvalue equation splits into two equations. One of these corresponds to
an even mode and the other corresponds to an odd mode. These modes can then be
dealt with separately. The real and imaginary parts of the eigenvalue equation yield
two equations, involving real quantities, to be solved simultaneously. Now there are
two alternatives for finding these dispersion relations:

σ = 0, Rz + Sz − Sr Rz − (λ1 + λ2 − Sr λ1)

4π2
=

(π2 + α2)

α2
(25)

or

(
φ Le

A

)
σ 2 = (π2 + α2)2 − α2

[
Rz + Sz − Sr Rz − (λ1 + λ2 − Sr λ1)

4π2

]
, (26)

(
φ Le

A

)(
Rz − λ1

4π2

)
+

(
Sz − λ2

4π2

)
=

[
1 +

φ Le

A

]
(π2 + α2)

α2
. (27)

As α varies, the minimum value of (π2 + α2)/α2 is 4π2 and it is attained at α = π.
From this, it is found that for the neutral stability curve for the non-oscillatory modes,
the dispersion relation for critical Rayleigh number is given by

Rz + Sz − Sr Rz = 4π2 +
(λ1 + λ2 − Sr λ1)

4π2
(28)
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and for the oscillatory modes it is given by(
φ Le

A

)(
Rz − λ1

4π2

)
+

(
Sz − λ2

4π2

)
= 4π2

[
1 +

φ Le

A

]
, (29)

which are same as those given in Nield et al. (1993) for the horizontal gradient case
in the absence of Soret effect. The second factor corresponds to the second lowest
eigenvalue and yields the same relation at α = π with the minimum value 16π2. The
above relations provide only upper bounds on the critical vertical Rayleigh number,
for the coplanar case.

6. Results and discussion
For the most general case, the equation det(Am,n) = 0 is solved to obtain the critical

vertical Rayleigh number. Usage of polar coordinates for the horizontal vectors
facilitates the procedure and the transformation given in Nield et al. (1993) is used
here also with an exception that in the present case, both ψSand ψR are given non-zero
values.

k = α cos ψ, l = α sin ψ,

Rx = RH cos ψR, Ry = RH sin ψR,

Sx = SH cos ψS, Sy = SH sin ψS.

The real and imaginary parts of the determinant gives two equations, one
corresponds to the real part, i.e. Re(Rz), and the other corresponds to the imaginary
part, Im(Rz), both are quadratic in Rz. These two equations are to be solved
simultaneously for Rz. Here, the Im(Rz) = 0 is a fourth-degree polynomial equation
in σ , solving which we find the values of σ in terms of other parameters. Using
these values of σ , the values of Rz are found from Re(Rz) = 0. For each value of
σ , the parameters α and ψ are varied to obtain the minimum value of Re(Rz).
The smallest of these values of Rz is its critical value. We used Mathematica for
the above calculations. In the present study, we used a fixed value for the ratio
ϕ/A as equal to 1. Extensive calculations have been made for the following range of
parameters, −50 � Sz � 100, 0 � RH � 100, −50 � SH � 100, −1 � Sr � 1, 0◦ � ψ � 180◦

and 0◦ � ψR, ψS � 180◦ with the Lewis number varying in the range 0.05 � Le � 500.
For ψR = 0, i.e. when the thermal and solutal gradients are coplanar, there is further
symmetry which allowed a restriction on the interval 0◦ � ψ � 90◦.

Variation of critical Rz is tabulated for different values of the Soret parameter and
vertical solutal Rayleigh number Sz in the absence of the horizontal thermal and
solutal Rayleigh numbers (table 1a) and in the presence of the horizontal thermal
and solutal Rayleigh numbers (table 1b). The present results are compared with the
existing results in the literature with the available data in the chosen parameter space.
From table 1, it is clearly seen that when Sr is zero, the present results with two-term
Galerkin approximation are in very good agreement with the existing results in the
literature (Guo & Kaloni 1995). The critical values of the wavenumbers are observed
to match with the values presented in their work. Also, it is seen that an increase in
the vertical solutal Rayleigh number reduced the critical value of Rz and it shows
that the Soret parameter has a stabilizing effect in the medium.

The effect of the diffusivity ratio parameter on the critical value of Rz is shown for
varying Soret parameter values for both the positive (table 2a) and negative (table 2b)
values of Sz. From the comparison made in table 2(a), it is evident that the present
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(a) Sz −30 −20 −10 0 10 20 30

Sr = 0 (present) 69.5102 59.5102 49.5102 39.5102 29.5102 19.5102 9.51024
Guo & Kaloni 69.48 59.48 49.48 39.48 29.48 19.48 9.48

(1995)
Sr = 0.1 77.2336 66.1225 55.0114 43.9003 32.7892 21.678 10.5669
Sr = −0.1 63.1911 54.510 45.0095 35.9184 26.8275 17.7366 8.64567

(b) Sr = 0 (present) 69.7383 59.7663 49.798 39.8336 29.8729 19.9161 9.96307
Guo & Kaloni 70.09 60.09 50.09 40.09 30.09 20.09 10.09

(1995)
Sr = 0.1 77.4275 66.348 55.2737 44.2046 33.1408 22.6822 11.0288
Sr = −0.1 63.445 66.348 55.2737 44.2046 33.1408 22.6822 11.0288

Table 1. Critical thermal Rayleigh numbers for (a) RH = SH = 0 and (b) RH = SH = 1
with σ = 0.

(a) Le 0.05 0.5 1 10 50 250 500

Sr = 0 (present) 29.4319 29.5882 29.5894 29.8729 31.6516 38.6286 39.989
Guo & Kaloni 30.60 29.71 29.68 30.09 32.11 42.25 54.91

(1995)
Sr = 0.1 32.6525 32.863 32.8649 33.1408 34.7021 39.6441 40.2882
Sr = −0.1 26.8011 26.9053 26.9057 27.197 29.1307 37.6987 39.7246

(b) Sr = 0 48.9841 49.5735 49.5806 49.798 50.1121 45.278 42.2788
Sr = 0.1 54.3751 55.0709 55.0794 55.2737 55.0981 46.6887 42.639
Sr = −0.1 44.5728 45.0754 45.0814 45.3152 45.988 43.997 41.9375

Table 2. Critical thermal Rayleigh numbers for RH = SH = 1 and
(a) Sz = 10 and (b) Sz = −10 with σ = 0.

results with the two-term Galerkin approximation are in excellent agreement with the
results obtained using the compound matrix method in Guo & Kaloni (1995). From
table 2(a), it is observed that for Sz > 0, increasing the value of Le increased the
value of Rz. Whereas for Sz < 0 (table 2b), it is clear that as Le increased, the critical
value of Rz increases up to a certain value and thereafter reduces.

A fixed notation is used to represent the curves corresponding to the non-oscillatory
and oscillatory modes. Solid lines represent non-oscillatory modes whereas the dashed
lines represent oscillatory modes in figures 2 to 7.

In figure 2, the response of the critical vertical thermal Rayleigh number Rz against
Sz is shown for the case of RH = SH = 0 and ψ = 0. The effect of the Soret parameter
on both oscillatory and non-oscillatory modes is also shown. It is evident from this
figure that the oscillatory modes are much more stable than the non-oscillatory modes.
Also it is observed that increasing Sz in the medium has a destabilizing effect on non-
oscillatory modes. Note that in the case of inclined thermal and solutal gradients, an
increase in the value of the Soret parameter stabilizes the non-oscillatory modes up
to a certain value of Sz, beyond which it starts destabilizing these modes. For the
oscillatory modes, it is observed that an increase in vertical solutal Rayleigh number
has a stabilizing effect whereas increase in Sr destabilized these oscillatory modes
marginally. These graphs are plotted for Sr = 0, 0.1, 0.5.

In figure 3, variation of Rz is shown as a function of Sz for varying Sr = 0, 0.1
for the case of non-zero horizontal solutal gradient, SH = 20. In this case also, an
increase in vertical solutal Rayleigh number destabilized both these modes, whereas
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Figure 2. Variation of critical value of Rz against Sz for varying Sr with RH = SH = 0.
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Figure 3. Variation of critical value of Rz against Sz for varying Sr = 0, 0.1 with RH = 0,
SH = 20.
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Figure 4. Variation of critical value of Rz against Sz for fixed Sr = 0 with ψ = 0◦, 90◦ for
RH = SH = 0, 20 with varying ψR, ψs .

an increase in Sr showed a similar effect after some critical value of Sz. With non-zero
values for SH , it is observed that the oscillatory modes switch over to non-oscillatory
modes as Sz increases further.

The critical value of Rz is plotted against Sz for ψ = 0◦ and ψ = 90◦ with RH = SH =
20 and varying ψS, ψR in the absence of the Soret effect in the medium in figure 4. It



12 P. A. Lakshmi Narayana, P. V. S. N. Murthy and R. S. R. Gorla

0 40 80 120 160

–20

0

20

40

60

80

100

ψ = 0°
= 90°
= 0°
= 90°

Rz

ψR

Figure 5. Variation of critical value of Rz against ψS for fixed Sr = 0.1, Sz = 10,
RH = SH = 20 for ψ = 0◦, 90◦.
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Figure 6. Variation of critical value of Rz against RH with fixed Sr = 0.5, Sz = 0 and SH = 20
with ψ = 0◦, 90◦.

is observed that the non-oscillatory modes are becoming unstable while the oscillatory
modes are stabilized with increasing Sz. An increase in ψ reduced the critical value
of Rz with increasing value of Sz. However, for the non-oscillatory modes, a distinct
phenomenon is observed. Increasing the value of ψ reduced the critical value of Rz

up to certain value of Sz; beyond this value of Sz, the critical value of Rz increases.
Variation of Rz against ψR is shown in figure 5 for two values of ψ = 0◦ and ψ = 90◦.

These graphs are plotted for fixed ψS = 45◦, Sz = 10, RH = SH = 20 and Sr = 0.1. From
this figure, it is clear that the non-oscillatory modes are much more stable than oscil-
latory modes up to a certain value of ψR and become destabilized for all values beyond
this value of ψR . The oscillatory modes are stabilized with increasing value of ψR .

From figure 6 where Rz is plotted as a function of RH for ψ = 0◦ and ψ = 90◦ when
Sr = 0.5, it is evident that the critical Rz for non-oscillatory modes is decreasing for
ψ = 0◦ whereas it is increasing for ψ = 90◦ with increasing value of RH . However, for
oscillatory modes, the critical value of Rz is decreasing with increasing values of ψ .
When ψ = 0◦, the horizontal thermal Rayleigh number shows a dual effect on Rz.

The aim of the present analysis is to show the influence of the Soret parameter
on the critical vertical thermal Rayleigh number Rz of both the oscillatory and
non-oscillatory modes. This is shown in figure 7 for two values of ψ with fixed
RH = SH = 0 and Sz = 0. From this, it is clear that the non-oscillatory modes are
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keeping other parameters fixed for ψ = 0◦, 90◦.

stable with increasing value of Sr and the critical value of Rz is observed to increase
with increasing values of ψ . However, for the oscillatory modes, the critical value of
Rz is decreasing slightly as Sr increases and, as the value of ψ increases, the critical
value of Rz increases for these modes also.

The variation of critical Rz against the Soret parameter Sr is plotted in figure 8,
for the stationary modes with RH = SH = 0 and 50; and ψ = 0◦ and 90◦. Solid lines
represent RH = SH = 0 and dashed lines represent RH = SH = 50. For the former case,
stationary modes are stabilized with increasing value of ψ as Sr increases. The critical
value of Rz is increased with the Soret parameter Sr . However, because of the presence
of horizontal gradients (in the latter case), the critical value of Rz is reduced with
increasing Sr for ψ = 0◦ and the Soret parameter showed a stabilizing effect when
ψ = 90◦.

In figure 9, the difference between critical values of Rz for non-oscillatory and
oscillatory modes with varying Sr is plotted for RH = SH = 0 (case 1), 50 (case 2)
and 100 (case 3), with ψ = 0◦ and ψ = 90◦. Solid lines represent plots for ψ = 0◦

and dashed lines represents for ψ = 90◦. Case 1 indicates that there are no horizontal
thermal and solutal gradients, for which there is no significant difference in the critical
vertical thermal Rayleigh number Rz and it is clear from this figure that the Soret
parameter has no significant effect on Rz compared with case 3 where horizontal
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Figure 9. Difference between the oscillatory and non-oscillatory modes of Rz against Sr with
RH = SH = 0, 50, 100, keeping other parameters constant for ψ = 0◦, 90◦.
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Figure 10. Variation of Rz against Sr for varying Sz and RH with fixed Le = 10, and SH = 10
for ψ = ψR = ψS = 0. Solid lines are non-oscillatory and dashed lines are oscillatory modes.

thermal and solutal gradients are present. In this case, it is seen that the difference
in the critical values of Rz considered is decreasing for ψ = 0◦ whereas the same is
increasing rapidly for ψ = 90◦ as the value of the Soret parameter Sr increases.

In figure 10, variation of the vertical thermal Rayleigh number Rz, is shown against
positive and negative values of the Soret parameter for both negative and positive
values of Sz. Two possibilities can arise for Sz: (i) when the concentration on the
upper plane is greater than that on the lower plane, the sign of Sz is positive; (ii)
when the concentration on the lower plane is greater than that on the upper plane,
the sign of Sz is negative. For the negative value of Sz, an increase in the horizontal
thermal Rayleigh number shows a stabilizing effect on non-oscillatory modes up to
some critical values of the Soret parameter. Beyond this value of the Soret parameter,
these modes are observed to be destabilized. For positive values of Sz, increasing the
value of the horizontal thermal Rayleigh number showed a destabilizing effect on
non-oscillatory modes. From all these observations, it is evident that an increase in
the Soret parameter value reduced the critical value of the vertical thermal Rayleigh
number in the medium.

For oscillatory modes, it is observed that the horizontal thermal Rayleigh number
exhibits a dual role on the critical vertical thermal Rayleigh number in the medium
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Figure 11. Variation of critical Rz for non-oscillatory modes with Sr with varying vertical
and horizontal solutal Rayleigh numbers for RH = 30, Le = 10 for ψ = ψR = ψS = 0.

for negative and positive values of Sz. When RH = 50, the value of Rz is more than
that for RH = 30 up to certain values of the Soret parameter. Beyond this critical
value of Sr, for RH = 50, the value of Rz is less than that for RH = 30. Also, the Soret
parameter shows a dual role on oscillatory modes for RH = 30.

In figure 11, variation of critical Rz is shown against the Soret parameter for
non-oscillatory modes with varying solutal Rayleigh numbers in the medium. It
is observed that these modes are destabilized with increasing values of the Soret
parameter. When Sz is negative, the critical value of Rz is more than in the other
case. When the horizontal solutal Rayleigh SH number is negative, the critical value
of Rz is comparatively less than in the other case. When SH > 0, the critical value of
Rz decreases linearly whereas a nonlinear reduction for Rz is observed for negative
horizontal solutal Rayleigh numbers against the Soret parameter Sr .

In figure 12, variation of critical Rz is shown as a function of the Soret parameter
in the absence and presence of the horizontal thermal and solutal Rayleigh numbers
in the medium for non-oscillatory modes (figure 12a) and for oscillatory modes
(figure 12b). From (figure 12a), it can be seen that when Sz < 0, the Soret parameter
shows a stabilizing effect in the absence of horizontal thermal and solutal Rayleigh
numbers whereas in the presence of these horizontal Rayleigh numbers, these modes
are destabilized. When the vertical solutal Rayleigh number is positive, i.e. Sz > 0,
an increase in the Soret parameter value showed a destabilizing effect in the absence
and presence of the horizontal gradients in the medium. From (figure 12b), it can be
seen that as the value of the Soret parameter is increased, the critical value of Rz is
increasing in the absence of horizontal gradients. Also, it is observed that the critical
value of Rz is more for Sz < 0 than in the other case. However, a distinct feature is
seen in the presence of these horizontal Rayleigh numbers. For Sz < 0, the critical
value of Rz is more than that of the other case up to certain value of the Soret
parameter. Beyond this value of Sr , when Sz < 0, the critical value of Rz is less than
the value of Rz when Sz > 0, and decreases with Sr .

In order to analyse the effect of Le on the critical value of Rz, we have shown the
variation of Rz against the Soret parameter with three different value of Le for non-
oscillatory modes in figure 13. When Le � 1, an increase in the Soret parameter shows
the stabilizing effect for negative values of Sz, whereas these modes are destabilized for
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Le = 10.
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Figure 13. Critical values of Rz for non-oscillatory modes against the Soret parameter Sr

for three different values of the diffusivity ratio parameter Le for ψ = ψR = ψS = 0. RH = SH =
30.

Le > 1. However, for positive values of Sz, an increase in the Soret parameter reduced
the critical value of Rz, whereas the value of Rz is increased with the diffusivity ratio
parameter.
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7. Conclusion
The effect of the Soret parameter on the thermosolutal convection induced by

inclined thermal and solutal gradients in a horizontal layer of a porous medium is
studied using a linear stability analysis. The horizontal components of these gradients
induce a Hadley circulation, which becomes unstable when the vertical component
of the Solutal Rayleigh number is large. Usual three-dimensional normal modes are
assumed for the disturbances and the resultant eigenvalue problem has been solved
using a two-term Galerkin method. The present results for the zero Soret parameter
case are compared with the existing results in the published literature which were
obtained using a compound matrix method, and the comparison shows very good
agreement. The vertical component of the thermal Rayleigh number has been treated
as the eigenvalue of the system and variation of this parameter is shown as a function
of the governing parameters of the flow. When the thermal and solutal Rayleigh
numbers lie on the same plane, a dispersion relation is achieved for the vertical thermal
Rayleigh number as a function of the overall wavenumber with Soret effect in the
medium. The effect of the Soret parameter on the critical value of the vertical thermal
Rayleigh number is observed in the absence and presence of the horizontal gradients.
It is observed that in the absence of horizontal gradients, the Soret parameter plays
a dual role on non-oscillatory modes with respect to the vertical solutal Rayleigh
number in the medium while the Soret parameter always showed a destabilizing
effect on these modes. A similar observation is made when the horizontal thermal
gradients are absent and horizontal solutal gradients are present. In the absence of
horizontal thermal and solutal Rayleigh numbers, it is observed that critical values of
the vertical thermal Rayleigh number are reduced with the vertical solutal Rayleigh
number whereas this critical value is increased with the Soret parameter. Similar
behaviour is observed with the Soret parameter and vertical solutal gradients when
both the horizontal gradients are present. When the vertical solutal Rayleigh number
is positive, the critical value of the vertical thermal Rayleigh number increased with the
increasing diffusivity ratio parameter while a dual role with respect to this diffusivity
ratio parameter is seen for negative values of the vertical solutal Rayleigh number.
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